

N_GAPA iN_GAPA Pile Driving Analysis (PDA) software

N_GAPA is the next generation of automatic Pile Driving Analysis software for dynamic pile testing,

comparable to and better than CAPWAP*. N_GAPA software estimates the total bearing capacity of a pile or shaft, as well as resistance distribution along the shaft and at the toe. It is easy to use and super-fast. iN_GAPA is the instant analysis version of N_GAPA and uses the exact same mathematical engine model.

Advantages

- Estimates the total bearing capacity of a pile or shaft.
- N_GAPA and CAPWAP results are the same (see next page).
- It can be used on any pile configuration (non-uniform piles).
- Real time signal match analysis.

Applications

Using N_GAPA to analyze the test results recorded by the GPC system allows real-time analysis of the test being performed, with real-time signal match, to ensure proper pile driving and faster decision-making on pile capacity and integrity.

Fast & Simple Pile Driving Analysis (PDA) system in Real Time

Reliable

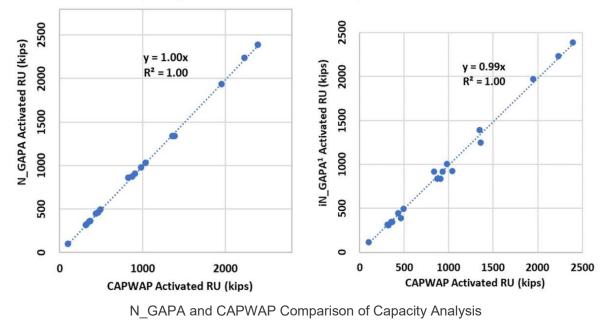
- Proven as equal performance or better than CAPWAP.
- Free software upgrade.
- iN_GAPA and N_GAPA data are interchangeable for improved analysis.

Easy to Use

- Simple graphs to get the full picture in real-time.
- Complementary to the GPC PDA system.

Top Performance

- Pile Analysis in real-time.
- Proven to be equal to and faster than CAPWAP.
- Real-time analysis of nonuniform piles in the field.


			RU activated				Difference to CAPWAP			Lumped JC
#	Туре	Pile	CAPWAP	N_GAPA	iN_GAPA1	iN_GAPA ²	N_GAPA	iN_GAPA ¹	iN_GAPA ²	
1		240-ft	492.7	497.0	492.1	465.4	0.87%	-0.12%	-5.54%	0.49
2	H Pile	24.1-ft	366.5	362.0	339.4	347.2	-1.23%	-7.39%	-5.27%	10.00
3		24.5-ft	356.9	357.0	344.5	346.3	0.03%	-3.47%	-2.97%	2.10
4	Concrete	large QT	463.8	460.0	391.5	395.7	-1.03%	-15.59%	-14.68%	0.30
5		long rise time	983	981.0	1005.6	967.7	-0.20%	2.30%	-1.56%	0.38
6			909.9	910.0	840.6	827.6	0.01%	-7.62%	-9.04%	0.40
7	Stinger	Stinger pile	1388.0	1346.6	1391.9	1459.9	-0.37%	3.41%	8.46%	1.64 or 0.883
8	H Pile	41-ft	323.2	323.0	307.6	309.8	-0.06%	-4.83%	-4.15%	1.20
9		107-ft	435.3	446.0	446.1	459.4	2.46%	2.48%	5.54%	1.10
10	Concrete	56.5-ft	1360.3	1343.0	1249.8	1258.5	-1.27%	-8.12%	-7.48%	0.27
11		gradual rise	312.1	315.0	316.5	324.1	0.93%	1.41%	3.84%	0.75
12	Becker	Becker BPT	99.9	98.0	107.4	109.5	-1.90%	7.51%	9.61%	0.68
13	Pipe pile	115-ft	874.5	872.0	835.5	860.9	-0.29%	-4.46%	-1.56%	0.51
14		153.7-ft	1038.1	1029.0	925.3	955.0	-0.88%	-10.87%	-8.01%	0.42
15	Concrete	End Bearing	1950.8	1939.0	1972.6	1954.3	-0.60%	1.12%	0.18%	2.00
16	Auger Cast	140-ft; D=36-in	2391.8	2387.0	2388.6	2388.8	-0.20%	-0.13%	-0.13%	0.00
17		140-ft; D=36-in	2229.3	2236.0	2232.8	2329.2	0.30%	0.16%	4.48%	0.00
18	H Pile	End Bearing	835.4	863.0	916.0	926.6	3.30%	9.65%	10.92%	2.00
Average			931.6	931.0	916.9	927.0	-0.01%	-1.58%	-0.50%	

N_GAPA and CAPWAP test results

¹ iN_GAPA from importing txt file

² iN_GAPA results from "Reset Analysis"

³ Depending on what LE used while in data acquisition mode

Present in +100 countries, for over 27 years we serve inspectors and engineers all over the world with the best in the market pile testing equipment. **www.piletest.com**