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Nonlinear analysis of piles in rock
Analyse non-linéaire des pieux en ‘oche

J. M. AMIR, Consulting Engineer, Tel-Aviv Israel

SYNOPSIS

The behavior of shear piles in rock is analyzed by the spring model methol, assuming an exponential relationship
between sidewall shear and displacement. The resulting nonlinear differen:ial equation, 1in terms of dimensionless
force, may be solved by iterative finite differences. The load-settlement cu*ves and axial force distribution obtained
from this solution show good agreement with field measurements.

INTRODUCTION sent yield phenimena., Still, it lacks continuity and is
grossly in er-or in the working range of the pile,
which is of mos . interest to the engineer.

Since the early seventies, drilled cast-in-situ piles

have become the most important foundation method in the Multi-element :lasto-plastic models, consisting of a
rocky regions of Israel. The main reason for this is series of spriigs and friction elements, have none of
that piling, especially in jointed and karstic rock, the above shortcomings. Generally, the stress-
has obvious economical advantages over shallow footings displacement cuives for such models are in the shape of
(Amir 1983). The rapid advance in construction techni- broken 1lines. In the special case where both spring
ques has, however, left analytical techniques behind. mmwMSmdﬁmﬁmvﬂmskmw%ina@m%dwl
In order to achieve safer and more economical design, progression (F:g. 1), the slopes of the successive
engineers need better understanding of the way these sections also form a descending geometrical progres-
piles function. The paper presented here proposes a new sion. 1In the limit, if an infinite number of elements
analytical approach in this direction. is taken, a smocth curve, obeying Eq. (1), results:

In (t') = a - n.s )]

SIDEWALL SHEAR MODELLING

where T is the sidewall shear stress, s the displace-
Piles in rock (with the exception of short, large- ment and both z and n are constants. Rearranging and
diameter sockets) derive their capacity mainly from integrating, Eq. (1) becomes:
sidewall shear. The problenm, therefore, is reduced to
modelling the behavior of the pile in shear. Basically,
there are three analytical techniques which can be used
to model the load-deformation behavior of piles:

a) The spring model (Scott 1981) (r < 1)
b) The half-space model (Mattes & Poulos 1969) s k.r2 s

¢) The finite element method (Pells & Turner k S k ST k'f'
Ta

The spring model was chosen for this work because of
its relative simplicity, and because the extra compu-
tational effort involved with the other (more accurate)
methods can only be justified if reliable material T e
parameters are available. Unfortunately, rock testing
techniques have not yet matured to this stage.

In its simplest form, the spring model is linear, and L~
may be characterized by a single spring element. Al- /’/
though it can represent the behavior of piles under //
relatively small loads, this single-parameter model can b

simulate neither work-hardening nor yield. [ii

: - =G
The elasto-plastic model, which consists of a spring
and a friction element connected in series, does repre- Fig. 1 - lulti-element elasto-plastic model
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Since T z 0 when s = 0, the integration constant K

is equal to e®/n, therefore:
T = m(1-e~NS) (3)

where m, the yield shear stress, is equal to ed/N Thig
exponential expression has the required attributes of
strain-hardening, continuity and eventual yield, still
using only two parameters. Eq. (3) is identical to the
expression suggested by Seott (1981), and to the load-
settlement function for complete piles given by van der
Veen (1953). By differentiating at the origin, it can
be verified that mn is the corresponding tangent
modulus.

For the 1linearly elastic case, it can be shown
(Appendix I), that the pile modulus (the ratio of mean
sidewall shear to pile settlement) is practically inde-
pendent of the pile diameter. It was therefore assumed
that, for given site conditions, the spring parameters
m and n are constant.

Unfortunately, there is little published data regarding
shear tests between concrete and rock. Results of such
tests, reported by Pells et al. (1980) and Williams &
Pells (1981), show that the exponential dependence of
shear stress on displacement is basically correct.

‘LOAD-SETTLEMENT BEHAVIOR

Under an applied axial load Q, the pile deforms
with depth z according to the function s = s(z). For a
pile section with a length A1 and circumference C, the
axial force changes from F to F +48F, and the equilib-
rium condition gives:

Ft'' = —— =z_1- C )

substituting the value of v from Eq. (3), one gets:

F' =-C. m(1 - ¢~ NS) (5)

differentiating,

F" =.Cmn e~ 08,5 (6)

Hooke's law for the same pile section yields:

ds ~F
8' 2 == = —-e 7
dz E A

where E and A are the modulus of elasticity and the
cross-sectional area of the pile, respectively. Substi-
tuting in (6):

F'* = Cmn e DS, ——- &
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Cobining (5) and (8) yields:

n n.C.m
Fn ; wmm FF' o e F = (6] 9)
E.A E.A

Equation (9) may be normalized by the following substi-
tu .ions:

@ =F/Q (10)

arx

Y
1

>
.

N
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so that Eq.(9) becomes:
L /R L — #=0 (12

the derivatives being with respect to the dimensionless
defth ¢ . To simplify Eq. (12), it is convenient to
mal e the following substitutions:

n.Q
Az e (13)
E.A
anc
mC.E.A
R — (14)
@.n
thus:
@" v 2.0 -KkK.B =0 (15)

Eq. (15) is a non-linear differential equation in terms
of the dimensionless force . This is a convenient
fori, since in practice the boundary values are also
knom in terms of force: At the top (¢ = 0) F=Q, so #
is :qual to unity. As for the bottom (¢ = Al), it was
demonstrated (Mattes & Poulos 1969) that for normal
sleiderness ratios the proportion of the force reaching
the bottom does not exceed a few percent. For shear
pil:s in rock, in which debris is allowed to collect at
the bottom, assuming zero force (# = 0) at the end will
usu illy be quite appropriate. For extremely long piles,
it may be more accurate to assume that the point of
zer. axial force is higher up, but this does not intro-
duc: any additional difficulty.

Eq. (15) has no closed-form analytical solution, and a
conrentional finite difference formulation produces
non -linear algebraic equations which are difficult to
solre. To overcome this difficulty, a fictitious
sec .ion was added on top of the pile, and an arbitrary
valle of ¢ assumed at the top of this fictitious
sec.ion. Using central differences then produced an
alg ithm that yielded the value of @ at the next
nod:, This procedure was repeated until the value of #
at the bottom has been obtained. Depending upon the
sig of this, the value of @ at the top of the ficti-
tio s section was iteratively adjusted until a value of
? c .ose enough to zero was reached at the bottom.




ice the distribution of forces along the pile is
iown, the corresponding distribution of sidewall shear
.resses 1is easily obtained, enabling the calculation
' settlements from Eq. (3). An important precaution,
ough, 1is not to base the settlement calculation on
1e shear stress on the top section of the pile: At the
p, the shear stress can be very close to the yield
oress m, and this can introduce a large numerical
ror. Instead, the settlement was computed from the
war at the bottom. The shortening of the pile, calcu-
ited by integrating s' from Eq. (7), was then added to
.ve the settlement of the top.

r the procedure described above, The load-settlement
thavior for piles of different diameters and lengths
» predicted, as well as the distribution of axial
wrce for any given load.

IRIVATION OF THE m AND n PARAMgftRS

i m and n parameters in Eq. (3) can be derived
‘om laboratory shear tests between concrete and repre-
:ntative rock samples, or preferrably from field tests
srformed on short sockets with a uniform stress dis-
~ibution. In rock consisting of different strata, m
1d n should be evaluated for each layer separately.

1 homogeneous rock, m and n may also be derived by
ack-calculation from the results of a pile test. Given
ich results, the yield load (and hence the yield shear
tress m) can be evaluated by any of the many available
sthods (Fellenius 1980). The second parameter (n) can
a2 back-calculated for any point on the load-settlement
urve by a trial and error technique which may be
snveniently programmed on a computer. Since each point
i1l produce a somewhat different n, the final n value
an be chosen by the least squares method to provide
he best fit. The fit can be further improved by final
ijustment of the m parameter.

typical example of back-calculation of spring para-
eters from load test results is given in Fig., 2. The
ile, 300 mm in diameter and 1.2 m long, was drilled in
hert and loaded by the embedded piston method (Amir
983a). The computed load-settlement curve, correspon-
ing to the ?ack-calculated values of m = 2050 KPa and

= 900 m~', is shown in Fig. 2 together with the
oints obtained from the test.
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"ig. 2 - Load-settlement curve for pile in chert
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COMPARISON WITH EXFERIMENTAL DATA

Caissons in Mica Schist - Philadelphia

A high-rise building in Philadelphia was

under-
pinned on instrurented caissons socketed deep into
sound mica schist (Koutsoftas 1981). Since the
sockets were designed with a very high factor of

safety, the lotd-settlement curves were essen-
tially 1linear. U:ing the yield stress m quot?d by
the author (1500 KPa), a value of n = 2900 m™' was
back-calculated from the load-settlement curve given
for a 610 mm diameter socket. The load distribution
along the pile vas then computed for two different
loads, comparing well with the measured values (Fig.3).
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Fig. 3 - Axial foice distribution along socket in mica
schist

Piles in Mudstone - Melbourne

Four instrumented test piles were installed in mode-
rately weathered mdstone and tested by Williams et al.
(1980). Test pile No. M10 (diameter 660 mm, length 7.8
m) settled 3.6 mm 1nder a load of 7560 KN. Based on the
ba?k—calculated pirameters (m = 900 KPa and n = 2900
m™'), the 1load d stribution along pile M10 was calcu-
lated for an appliid load of 7660 KN. Again the results
(Fig. U4) show a marked resemblance to the measured
values.
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Fig.4 - Axial force distribution along pile in mudstone
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CONCLUSIONS

a. The dependence of sidewall shear on displacement may
be represented by an exponential function, with the
yield stress m and the tangent modulus mn as para-
meters.

b. Using this function leads to a nonlinear differen-
tial equation in terms of force, describing the
complete behavior of shear piles in rock.

¢. The parameters m and n may be obtained directly from
shear tests, either in the field or in the laboratory.
In uniform rock, m and n may also be back-calculated
from the results of pile load tests.

d. Using the parameters thus obtained, the prediction
of load distribution along the pile becomes rather
straightforward, and the results show good resemblance
to in-situ distributions measured in a variety of
rocks.

APPENDIX I - INFLUENCE OF THE DIAMETER ON THE
SETTLEMENT OF PILES

According to Mattes & Poulos (1969), the settlément of
piles in a linearly elastic half-space is given by:

S = mmmmmm Ip (16)
1 Ep

where I, is an influence factor and ER the rock mass
modulus. For modulus ratios K which are typical of
rock, the I, values published by Mattes & Poulos are
roughly in direct proportion to the slenderness ratio
1/D (Fig. 5). Therefore, I may be approximately
substituted by: P

1
) G an
P D

where B = B(K) is constant for a given modulus ratio.
Substituting in Eq. (16) results:

Iy g

yd

/
4
‘/ K =100
| L
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/D

Fig. 5 - Influence factor Ip vs. slenderness ratio 1/D
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S = s (18)

wheie F is the mean sidewall shear. The pile modulus M

is, therefore: P

My = === = —mmem (19)

Fro. Eq. (19) it emerges that, at least as a first
appt oximation, the pile modulus is independent of the
pil¢ diameter D.
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